More Frequent β-CateninGene Mutations in Adenomas than in Aberrant Crypt Foci or Adenocarcinomas in the Large Intestines of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-treated Rats

Abstract
Alteration of adenomatous polyposis coli (APC) is known to be an early event in neoplasia, causing activation of the beta-catenin / Tcf pathway. Although it is thought that alterations in APC and beta- catenin may complement one another, the contribution of beta-catenin mutations to colorectal carcinogenesis remains unclear. We therefore performed PCR-single strand conformation polymorphism analysis and direct sequencing of exon 3 of beta-catenin gene in adenomas, adenocarcinomas, and aberrant crypt foci (ACF), considered to be putative precursor lesions of colorectal neoplasias, in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) treated F344 rats. beta-Catenin mutations were identified in all of 7 adenomas (100%) and 6 of 12 (50%) adenocarcinomas. All of the mutations were found in codons 32 through 34, the serine encoded by codon 33 being an important phosphorylation site by glycogen synthase kinase-3beta. Regarding ACF, 14 of 46 (30.4%) were found to be mutated, eleven (78%) in codon 34, and the others in codon 45 (frequently altered in human colon cancer), and codons 47 and 56 (which have not been previously reported). The frequency of beta-catenin mutations in adenomas was significantly higher than in ACF (P < 0.001) and adenocarcinomas (P < 0.05). Thus, beta-catenin mutations may have more importance in the genesis of adenomas than ACF or adenocarcinomas in rat colon carcinogens by PhIP.

This publication has 21 references indexed in Scilit: