Abstract
We examined the grafting of polymers onto an activated carbon powder surface by polymerization that was initiated by azo groups that were introduced onto the surface as well as the effects of grafted polymers on the adsorption of acetic acid. The introduction of azo groups onto the surface was achieved by the following methods: (1) a reaction of 4,4′-azobis(4-cyano-pentanoic acid) (ACPA) with surface isocyanate groups that were introduced beforehand by treatment with tolylene 2,4-diisocyanate (AC-Azo 1) and (2) the direct condensation of ACPA with surface phenolic hydroxyl groups by using N,N'-dicyclohexylcarbodiimide (AC-Azo 2). The radical polymerizations of styrene, methyl methacrylate, N,N-diethylacrylamide (DEAM), and N-isopropylacrylamide (NIPAM), were successfully initiated by the azo groups on the surface and the corresponding polymers were grafted onto the surface. There was a significant decrease in the adsorption of the acetic acid of the activated carbons when polymers were grafted onto them, particularly in regards to the grafting of hydrophobic polymers. On the other hand, a decrease in the adsorbability of the polyDEAM-grafted and polyNIPAM-grafted activated carbon was barely observed. In addition, polyDEAM-grafted and polyNIPAM-grafted activated carbons showed temperature-dependent adsorption of acetic acid: the adsorbability of these activated carbon decreased above lower critical solution temperature of these polymers, which is about 32°C.

This publication has 20 references indexed in Scilit: