Non Equilibrium Molecular Dynamics Simulation of Coupled Heat- and Mass Transport Across a Liquid/Vapor Interface

Abstract
The transport properties of bulk liquid, gas and at the gas/liquid interface were studied for two binary Lennard-Jones/spline mixtures by use of nonequilibrium molecular dynamics. One of the mixtures was an ideal isotope mixture, the other a non-ideal mixture. The simulations gave the thermal conductivity, mutual diffusion coefficient, heat flux, mass flux, and the changes in these quantities across the interface. The local entropy production was expressed in terms of fluxes and thermodynamic forces, and numercial estimates are given. It was shown that the largest contribution to the total entropy production occurs in the vapor phase under the chosen conditions. We expect, however that if the mass flux were larger, the major contribution to the entropy production would come from the liquid phase.