Elevated Endothelin-1 Levels Impair Nitric Oxide Homeostasis Through a PKC-Dependent Pathway

Abstract
Background— Endothelin-1 (ET-1) plays an important role in the maintenance of vascular tone and pathological states such as ischemia/reperfusion (I/R) injury, coronary vasospasm, and cardiac allograft vasculopathy. We assessed the effects of elevated ET-1 levels as seen after I/R to determine if ET-1 modulates nitric oxide (NO) production via the translocation of specific protein kinase C (PKC) isoforms. Methods and Results— Human saphenous vein endothelial cells (HSVECs) (n=8) were incubated with ET-1 or phosphate-buffered saline (PBS) for 24 hours. NO production was determined in the supernatant by measuring nitrate/nitrite levels. Protein expression of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), caveolin-1 and PKC were determined. Lastly, PKC translocation and activity were assessed after exposure to the drug of interest. HSVECs exposed to ET-1 displayed decreased NO production. PKC inhibition reduced NO production, whereas PKC activation increased production. NO production was main...

This publication has 19 references indexed in Scilit: