Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.)

Abstract
Few-unit recordings were obtained using metal microelectrodes. Separation into single-unit spike trains was based on differences in spike amplitude and spike waveform. For that purpose a hardware microprocessor based spike waveform analyser was designed and built. Spikes are filtered by four matched filters and filter outputs at the moments of spike occurrence are read by a computer and used for off-line separation and spike waveform reconstruction. Thirthy-one double unit recordings were obtained and correlation between the separated spike trains was determined. After stimulus correction correlation remained in only 8 of the double unit records. It appeared that in most cases this neural correlation was stimulus dependent. Continuous noise stimulation resulted in the strongest neural correlation remaining after correction for stimulus coupling, stimulation with 48 ms duration tonepips presented once per second generally did not result in a significant neural correlation after the correction procedure for stimulus lock. The usefulness of the additive model for neural correlation and the correction procedure based thereupon is discussed.