Distribution Theory of Runs: A Markov Chain Approach

Abstract
The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.

This publication has 0 references indexed in Scilit: