The Behavior of the Snow White Chilled-Mirror Hygrometer in Extremely Dry Conditions

Abstract
The Snow White hygrometer, made by Meteolabor AG, Switzerland, is a new chilled-mirror instrument using a thermoelectric Peltier cooler to measure atmospheric water vapor. Its performance under dry conditions is evaluated in simultaneous measurements using the NOAA/CMDL frost-point hygrometer at Boulder, Colorado; San Cristóbal, Galápagos Islands, Ecuador; Watukosek, Indonesia; and Mauna Loa Observatory, Hawaii. The Snow White exhibits a lower detection limit of about 3%–6% relative humidity, depending on the sensor configuration. This detection limit is determined by the temperature depression attainable by the thermoelectric cooler. In some cases, loss of frost-point control within layers with relative humidity below this detection limit caused inaccurate measurements above these dry layers, where the relative humidity was within the detection range of the instrument. The sensor does not operate in the stratosphere because of the large frost-point depression and the large potential for outgassi... Abstract The Snow White hygrometer, made by Meteolabor AG, Switzerland, is a new chilled-mirror instrument using a thermoelectric Peltier cooler to measure atmospheric water vapor. Its performance under dry conditions is evaluated in simultaneous measurements using the NOAA/CMDL frost-point hygrometer at Boulder, Colorado; San Cristóbal, Galápagos Islands, Ecuador; Watukosek, Indonesia; and Mauna Loa Observatory, Hawaii. The Snow White exhibits a lower detection limit of about 3%–6% relative humidity, depending on the sensor configuration. This detection limit is determined by the temperature depression attainable by the thermoelectric cooler. In some cases, loss of frost-point control within layers with relative humidity below this detection limit caused inaccurate measurements above these dry layers, where the relative humidity was within the detection range of the instrument. The sensor does not operate in the stratosphere because of the large frost-point depression and the large potential for outgassi...