Interactive three-dimensional holographic displays
- 1 May 1997
- journal article
- Published by Association for Computing Machinery (ACM) in ACM SIGGRAPH Computer Graphics
- Vol. 31 (2) , 63-67
- https://doi.org/10.1145/271283.271312
Abstract
Computer graphics is confined chiefly to flat images. Images may look three-dimensional (3D), and sometimes create the illusion of 3D when displayed, for example, on a stereoscopic display [16, 13, 12]. Nevertheless, when viewing an image on most display systems, the human visual system (HVS) sees a flat plane of pixels. Volumetric displays can create a 3D computer graphics image, but fail to provide many visual depth cues (e.g. shading texture gradients) and cannot provide the powerful depth cue of overlap (occlusion). Discrete parallax displays (such as lenticular displays) promise to create 3D images with all of the depth cues, but are limited by achievable resolution. Only a real-time electronic holographic ("holovideo") display [11, 6, 8, 7, 9, 21, 22, 20, 2] can create a truly 3D computer graphics image with all of the depth cues (motion parallax, ocular accommodation, occlusion, etc.) and resolution sufficient to provide extreme realism [13]. Holovideo displays promise to enhance numerous applications in the creation and manipulation of information, including telepresence, education, medical imaging, interactive design and scientific visualization.The technology of electronic interactive three-dimensional holographic displays is in its first decade. Though fancied in popular science fiction, only recently have researchers created the first real holovideo systems by confronting the two basic requirements of electronic holography: computational speed and high-bandwidth modulation of visible light. This article describes the approaches used to address these problems, as well as emerging technologies and techniques that provide firm footing for the development of practical holovideo.Keywords
This publication has 13 references indexed in Scilit:
- Nonuniformly sampled computer‐generated hologramsOptical Engineering, 1996
- Holographic bandwidth compression using spatial subsamplingOptical Engineering, 1996
- Scalable optical architecture for electronic holographyOptical Engineering, 1995
- Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architectureApplied Optics, 1995
- New high-resolution display device for holographic three-dimensional video: principles and simulationsOptical Engineering, 1994
- Real-time electroholographic system using liquid crystal television spatial light modulatorsJournal of Electronic Imaging, 1993
- Interactive computation of holograms using a look-up tableJournal of Electronic Imaging, 1993
- Real-time hologram construction and reconstruction using a high-resolution spatial light modulatorApplied Physics Letters, 1991
- Real-time computer-generated hologram by means of liquid-crystal television spatial light modulatorOptics Letters, 1986
- Optical Image Correlation With A Binary Spatial Light ModulatorOptical Engineering, 1984