Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

Abstract
We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of $^{16}$O and $^{40}$Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.

This publication has 0 references indexed in Scilit: