Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6'-N-acetyltransferase Ib and IIa proteins

Abstract
The aminoglycoside 6'-N-acetyltransferase [AAC(6')-I] and AAC(6')-II enzymes represent a class of bacterial proteins capable of acetylating tobramycin, netilmicin, and 2'-N-ethylnetilmicin. However, an important difference exists in their abilities to modify amikacin and gentamicin. The AAC(6')-I enzymes are capable of modifying amikacin. In contrast, the AAC(6')-II enzymes are capable of modifying gentamicin. Nucleotide sequence comparison of the aac(6')-Ib gene and the aac(6')-IIa gene showed 74% sequence identity (K. J. Shaw, C. A. Cramer, M. Rizzo, R. Mierzwa, K. Gewain, G. H. Miller, and R. S. Hare, Antimicrob. Agents Chemother. 33:2052-2062, 1989). Comparison of the deduced protein sequences showed 76% identity and 82% amino acid similarity. A genetic analysis of these two proteins was initiated to determine which amino acids were responsible for the differences in specificity. Results of domain exchanges, which created hybrid AAC(6') proteins, indicated that amino acids in the carboxy half of the proteins were largely responsible for determining specificity. Mutations shifting the specificity of the AAC(6')-Ib protein to that of the AAC(6')-IIa protein (i.e., gentamicin resistance and amikacin sensitivity) have been isolated. DNA sequence analysis of four independent isolates revealed base changes causing the same amino acid substitution, a leucine to serine, at position 119. Interestingly, this serine occurs naturally at the same position in the AAC(6')-IIa protein. Oligonucleotide-directed mutagenesis was used to construct the corresponding amino acid change, a serine to leucine, in the AAC(6')-IIa protein. This change resulted in the conversion of the AAC(6')-IIa substrate specificity to that of AAC(6')-Ib. Analysis of additional amino acid substitutions within this region of AAC(6')-Ib support the model that we have identified an aminoglycoside binding domain of these proteins.