Abstract
BACKGROUND Lung volume measurement by nitrogen washout is widely used in infants, though a lack of accuracy and changes of calibration over time have been reported. The potential sources of error were explored in order to increase the accuracy and reliability of the technique. METHODS A commercial system for nitrogen washout and a 0.5 litre calibrating syringe as a lung model were used to perform over 2000 in vitro washouts, including simulated rapid breathing, shallow breathing, periodic breathing, sighs, and brief apnoeas. A constant 10 l/min bias flow of oxygen and extended equipment warming times were employed. A collapsible breathing bag was incorporated into the washout circuit. Following a single two point calibration, known air volumes from 42 ml to 492 ml were measured by nitrogen washout over a 14 hour period. The flow waveform in the nitrogen mixing chamber during a washout in vitro, with and without the breathing bag in the circuit, was also studied. RESULTS The mean coefficient of variation of all volumes was 0.66%. The mean difference between measured and known volumes was 0.30 ml (95% confidence interval (CI) –0.18 to 0.79). This difference was not statistically significant (p = 0.22). The mean percentage error was –0.1% (range –0.47% to 0.46%). Nitrogen calibration remained stable for 14 hours. Without the breathing bag flow transients were frequent in the mixing chamber during in vitro washout. CONCLUSIONS This technique increases the accuracy in vitro and the precision in vivo of volume measurement by nitrogen washout. Sources of potential errors including baseline drifting and inadequate equipment warming times were identified. The breathing bag acted as a buffer reservoir, preventing large swings in flows within the nitrogen mixing chamber during washouts, and should be an integral component of the nitrogen washout circuit.