Role of Endothelin-1/Endothelin Receptor System in Endotoxic Shock Rats.

Abstract
Endothelin (ET)-1, a potent vasoconstrictor peptide derived from the endothelium, is markedly increased in endotoxic shock, although the pathophysiological role of ET-1 under septic conditions remains obscure. To delineate the role of ET-1 and its receptor subtype in endotoxic shock, we here attempted to determine the changes of circulating levels of ET-1 and its biosynthetic intermediate big ET-1 in endotoxic shock rats, to evaluate the gene expression of ET-1 as well as the ET-1 receptor subtypes (ETA and ETB) in the heart, lung and liver, and to study the effects of ET receptor antagonists on systemic arterial blood pressure, heart rate and survival rate. Administration of bacterial lipopolysaccharide (LPS) caused profound hypotension, increased heart rate and death, and these effects were blocked by a nonselective ETA/ETB receptor antagonist (TAK044), but not by an ETA selective antagonist (BQ123). Administration of exogenous ET-1 caused a profound pressor response in control rats, but not in the LPS-pretreated rats. Injection of LPS caused marked elevation of plasma levels of both ET-1 and big ET-1, which were not affected by treatment with either ET receptor antagonist. Administration of LPS caused up-regulation of ET-1 and ETB receptor mRNA in the heart, whereas ETA receptor mRNA was markedly down-regulated in the heart, lung and liver. These data suggest differential gene regulation of ET-1 and its receptor subtypes in various organs from endotoxic shock rats, and that nonselective ETA/ETB receptor antagonist, but not ETA receptor antagonist, ameliorates endotoxin-induced hypotension and death. (Hypertens Res 2001; 24: 119-126)