Central Nervous System Structure and Function in Sturge-Weber Syndrome: Evidence of Neurologic and Radiologic Progression

Abstract
Sturge-Weber syndrome is characterized by the presence of a port-wine nevus, epilepsy, stroke-like episodes, headache, and developmental delay. We studied 20 cases to test the hypothesis that decreased cerebral blood flow alters neurologic function by affecting cellular glucose metabolism. Group A consisted of 10 patients with a mean age of 1.75 years and early seizure onset (6.8 months), whereas group B was composed of older patients (mean age, 15.3 years) with later onset of seizures (3.7 years). Neurologic disease was more severe in group A, but group B had more widespread structural brain defects — shown on computed tomographic scans and magnetic resonance imaging — and metabolic brain defects — shown on hexamethylpropyleneamine oxime and [18F] fluorodeoxyglucose single photon emission computed tomographic scans. Six group A cases had hypoperfusion at baseline and five of nine had worsening of perfusion and glucose metabolism 1 year later. A total of 119 stroke-like episodes occurred in six group A cases and eight group B cases; there were 65% fewer strokes in children treated with aspirin. The data suggest that progressive hypoperfusion and glucose hypometabolism are associated with neurologic deterioration in Sturge-Weber syndrome. Longitudinal studies are needed to better define the natural history of disease and to evaluate the safety and efficacy of aspirin therapy. ( J Child Neurol 1998;13:606-618).