Protective Anti‐V Antibodies InhibitPseudomonasandYersiniaTranslocon Assembly within Host Membranes

Abstract
Pathogenic Yersinia species and Pseudomonas aeruginosa share a similar type III secretion/translocation system. The translocation system consists of 3 secreted proteins, YopB/PopB, YopD/PopD, and LcrV/PcrV; the latter is known to be a protective antigen. In an in vitro assay, the translocation system causes the lysis of erythrocytes infected with wild-type (wt) P. aeruginosa. wt Y. enterocolitica is not hemolytic, but a multiknockout mutant deprived of all the effectors and of YopN (ΔHOPEMN) is hemolytic. In the presence of antibodies against PcrV and Y. pestis LcrV, the hemolytic activity of P. aeruginosa was inhibited. Similarly, the hemolytic activity of ΔHOPEMN was inhibited in the presence of anti-LcrV antibodies. The assembly of the translocon, composed of PopB/D and YopB/D proteins, was disturbed in immunoprotected erythrocyte membranes, mimicking the phenotypes of V knockout mutants. Thus, protective antibodies against the V antigens of Yersinia species and P. aeruginosa act at the level of the formation of the translocon pore in membranes of infected host cells by blocking the function of LcrV/PcrV. The hemolysis assay could be adapted for high-throughput screening of anti-infectious compounds that specifically target the type III translocon

This publication has 0 references indexed in Scilit: