Abstract
For several years now NOAA/NESDIS have derived an operational global sea surface temperature (SST) product from the AVHRR instrument on the NOAA satellites. This is done using the MCSST and CPSST algorithms which contain coefficients that are determined from a regression analysis of satellite data against in situ surface data. The current algorithms are used to provide global SST data without taking into account the latitude, climate or location of the satellite data, although the CPSST coefficients do have a weak dependence on the satellite brightness temperatures. Because of this global application the current SST algorithms have inherent errors due to local climate influences. In this paper a new SST algorithm is developed that does not rely on regression analysis to derive its coefficients. By using the spatial variation of the brightness temperatures in a small area (50 km by 50 km) it is possible to derive the appropriate coefficients to use in the algorithm. The SST field can thus be derived at any location without need for prior determination of the algorithm coefficients. In a simulation study, data from twenty-five radiosonde ascents-arc use with an atmospheric transmission model to derive a range of atmospheric transmittances and satellite brightness temperatures. Coincident AVHRR data and ship data are used to assess the accuracy of the new algorithm. The various dependencies of the terms in the SST algorithm are investigated. As with the MCSST and CPSST algorithms, the new method has largest errors when applied in situations of abnormal atmospheric structure. The improvement over the MCSST product may initially be only marginal, but with the advent of the more precise data from the Along Track Scanning Radiometer (ATSR) a more accurate global SST product may be possible.