Abstract
A simple dielectric theory is used to describe the operating properties of phonon-terminated masers of the type reported by Johnson, Dietz, and Guggenheim. Basic to this model is a broadband gain characteristic which describes the frequency-dependent gain of the active maser material as a function of the populations of metastable electronic levels and of the temperature or temperatures describing lattice vibrations. The power levels required to produce phonon saturation are estimated to be extremely high (typically, ∼1010 W/cm2 power output). Because phonon saturation does not ordinarily occur, a single-lattice temperature is generally sufficient. In that case, details of the electron-phonon coupling are unimportant, and the gain can be related by detailed balance to fluorescence and absorption spectra. Effects of phonon saturation are briefly discussed in the event that they might pertain to exceptional systems and because they give insight into the principles of operation of these masers.