Abstract
The pleural membrane is modeled as a planar collection of interconnected randomly oriented line elements. By assuming that the line elements follow the strain field of a continuum, a strain-energy function is formulated. From the strain-energy function, an explicit stress-strain equation for large deformations is derived. In the linear approximation of the stress-strain equation the shear modulus and the area modulus of the membrane are respectively found to be 2.4 and 2.8 times the tension at the reference state. The stress-strain equation for large deformations is used to predict the displacement field around a circular hole in pleura. Good agreement is found between these predictions and measurements made on ablated pleura from dog lungs. From these theoretical and experimental results the conclusion is drawn that the pleura has a significant role in carrying shear forces and maintaining the lung's shape.

This publication has 5 references indexed in Scilit: