Dynamic Spherical Cavity Expansion of Strain-Hardening Materials

Abstract
We developed models for the dynamic expansion of spherical cavities from zero initial radii for elastic-plastic, rate-independent materials with power-law strain hardening. The models considered the material as incompressible and compressible. For an incompressible material, we obtained closed-form solutions, whereas the compressible results required the numerical solution of differential equations. A comparison of the numerical results from both models showed the effect of compressibility.

This publication has 0 references indexed in Scilit: