Energy dependence of CuL2,3satellites using synchrotron excited x-ray-emission spectroscopy

Abstract
The L2,3 x-ray emission of Cu metal has been measured using monochromatic synchrotron radiation. The self-absorption effect in the spectra is shown to be very small in our experimental geometry. From the quantitative analysis of spectra recorded at different excitation energies, the L3/L2 emission intensity ratio and the partial Auger width are extracted. High-energy satellite features on the L3 emission line are separated by a subtraction procedure. The satellite intensity is found to be slowly increasing for excitation energies between the L3, L2, and L1 core-level thresholds due to shake-up and shake-off transitions. As the excitation energy passes the L2 threshold, a step of rapidly increasing satellite intensity of the L3 emission is found due to additional Coster-Kronig processes.
All Related Versions