RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM
Open Access
- 20 July 1958
- journal article
- research article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 41 (6) , 1223-1244
- https://doi.org/10.1085/jgp.41.6.1223
Abstract
The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of back and forth protoplasmic streaming along the strand. When atmospheric pressure at a part of the plasmodium is increased (about 10 cm. H2O), the electric potential at this part becomes positive (0 to 20 mv.) to another part with a time constant of 2 to 15 minutes. If the atmospheric pressure at a part of the plasmodium is changed (about 10 cm. H2O) periodically, the electric potential rhythm also changes with the same period as that of the applied pressure change, and the amplitude of the former grows to a new level (i.e., forced oscillation). The electric potential rhythm, in this case, is generally delayed about 90° in phase angle from the external pressure change. The period of the electric potential rhythm which coincided with that of the pressure change is maintained for a while after stopping the application of the pressure change, if the period is not much different from the native flow rhythm. Such a pressure effect is brought about by the forced transport of protoplasm and is reversible as a rule. In the statistical analysis made by Kishimoto (1958) and in the rheological treatment made in the report, the rhythmic deformation of the contractile protein networks is supposed to be the cause of the protoplasmic flow along the strand and of the electric potential rhythm. The role of such submicroscopic networks in the protoplasm in various kinds of protoplasmic movement is emphasized.Keywords
This publication has 9 references indexed in Scilit:
- RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUMThe Journal of general physiology, 1958
- Physical and chemical studies of myxomyosin, an ATP-sensitive protein in cytoplasmBiochimica et Biophysica Acta, 1957
- THE ISOLATION OF MYXOMYOSIN, AN ATP-SENSITIVE PROTEIN FROM THE PLASMODIUM OF A MYXOMYCETEThe Journal of general physiology, 1956
- OBSERVATIONS ON AN ATP-SENSITIVE PROTEIN SYSTEM FROM THE PLASMODIA OF A MYXOMYCETEThe Journal of general physiology, 1956
- Mechanism of Protoplasmic MovementNature, 1953
- An actomyosin‐like substance from the plasmodium of a myxomyceteJournal of Cellular and Comparative Physiology, 1952
- Electric Impedance of the Plasmodium of a Slime Mold, Physarum polycephalumCYTOLOGIA, 1952
- Folding and Unfolding of Protein Molecules in Relation to Cytoplasmic Streaming, Amœboid Movement and Osmotic WorkNature, 1950
- A theory of protoplasmic streaming.1949