Spinor fields and the GL(4,R) gauge structure in the nonsymmetric theory of gravitation
- 1 July 1988
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 29 (7) , 1655-1660
- https://doi.org/10.1063/1.527914
Abstract
The spinor structure associated with the local gauge group GL(4,R) of the nonsymmetric gravitation theory (NGT) is based on a spinor wave equation constructed from a vierbein, a GL(4,R) spin connection, and the infinite‐dimensional irreducible representations of the universal covering group S L (4,R) of the noncompact group SL(4,R). The multiplicity‐free irreducible representations of S L (4,R) correspond to bivalued spinorial representations of SL(4,R) that contain an infinite number of half‐odd integer spin particles. By adjoining the translations T4, the extended group A=T4×GL(4,R) replaces the Poincaré group P. The properties of the mass spectrum are obtained from an infinite‐component wave equation and the physical spinor field consists of an infinite sum of finite, nonunitary representations of the Lorentz group.Keywords
This publication has 38 references indexed in Scilit:
- SL(4,R) world spinors and gravityPhysics Letters B, 1985
- SL(4,R) classification for hadronsPhysics Letters B, 1985
- Generalized theory of gravitationFoundations of Physics, 1984
- Majorana Representations of the Lorentz Group and Infinite-Component FieldsJournal of Mathematical Physics, 1968
- Construction of Local Quantum Fields Describing Many Masses and SpinsPhysical Review B, 1968
- No-Go TheoremPhysical Review Letters, 1968
- Infinite Multiplets and Local FieldsPhysical Review B, 1967
- Multimass Fields, Spin, and StatisticsPhysical Review B, 1967
- Unitarity, Causality, and Fermi StatisticsPhysical Review B, 1966
- Teoria Relativistica di Particelle Con Momento Intrinseco ArbitrarioIl Nuovo Cimento (1869-1876), 1932