Abstract
Sudden rupture of abdominal aortic aneurysm (AAA), often without prior medical warning, is the 13th leading cause of mortality in the US. The local rupture is triggered when the elusive maximum local wall stress exceeds the patient's yield stress. Employing a validated fluid-structure interaction code, the coupled blood flow and AAA wall dynamics were simulated and analysed for two representative asymmetric AAAs with different neck angles and iliac bifurcations. It turned out that the AAA morphology plays an important role in wall deformation and stress distribution, and hence possible rupture. The neck angle substantially impacts flow fields. A large neck angle may cause strong irregular vortices in the AAA cavity and may influence the wall stress distribution remarkably. The rupture risk of lateral asymmetric AAAs is higher than for the anterior-posterior asymmetric types. The most likely rupture site is located near the anterior distal side for the anterior-posterior asymmetric AAA and the left distal side in the lateral asymmetric AAA.