Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles

Abstract
Hemagglutinin, the membrane fusion protein of influenza virus, is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we exploited this activity of hemagglutinin to achieve efficient gene delivery to cultured cells. Hemagglutinin was reconstituted in the presence of the monocationic lipid dioleoyldimethylammonium chloride (DODAC) to permit plasmid binding to the virosome surface. Virosomes with 30 mol% DODAC exhibited a distinct binding capacity for plasmid without causing aggregation. The virosome fusion activity was not affected by the cationic lipid DODAC as demonstrated by low-pH-dependent lipid mixing with erythrocyte ghosts. Efficient cell transfection of BHK-21 cells was observed with virosomes containing 30 mol% DODAC and plasmid encoding for β-galactosidase (pCMV β-gal) associated to their surface. The transfection activity observed was dependent on the functional activity of hemagglutinin. Contrary to DNA/cationic lipid complexes the transfection was not dependent on the cationic lipid to DNA charge ratio. Importantly, transfection of BHK-21 cells with pCMV β-gal by DODAC-containing virosomes did not show any significant signs of cytotoxicity that is commonly observed with DNA/cationic lipid complexes. Together with the high levels of expression of the transgene this highlights the potential of DODAC-containing virosomes as a novel approach in nonviral gene transfer.

This publication has 34 references indexed in Scilit: