Data mining of the GAW14 simulated data using rough set theory and tree-based methods

Abstract
Rough set theory and decision trees are data mining methods used for dealing with vagueness and uncertainty. They have been utilized to unearth hidden patterns in complicated datasets collected for industrial processes. The Genetic Analysis Workshop 14 simulated data were generated using a system that implemented multiple correlations among four consequential layers of genetic data (disease-related loci, endophenotypes, phenotypes, and one disease trait). When information of one layer was blocked and uncertainty was created in the correlations among these layers, the correlation between the first and last layers (susceptibility genes and the disease trait in this case), was not easily directly detected. In this study, we proposed a two-stage process that applied rough set theory and decision trees to identify genes susceptible to the disease trait. During the first stage, based on phenotypes of subjects and their parents, decision trees were built to predict trait values. Phenotypes retained in the decision trees were then advanced to the second stage, where rough set theory was applied to discover the minimal subsets of genes associated with the disease trait. For comparison, decision trees were also constructed to map susceptible genes during the second stage. Our results showed that the decision trees of the first stage had accuracy rates of about 99% in predicting the disease trait. The decision trees and rough set theory failed to identify the true disease-related loci.

This publication has 5 references indexed in Scilit: