Apolipoprotein A-I conformation in discoidal particles: Evidence for alternate structures

Abstract
To define the conformation of apolipoprotein A-I in discoidal particles, the immunoreactivity of a series of epitopes distributed along the apoA-I sequence has been evaluated in lipid-free apoA-I and in lipid-bound form. To this end, reconstituted discoidal lipoproteins, here called LpA-I, and defined by number of apoA-I per particle (e.g., Lp2A-I), have been prepared with palmitoyloleoylphosphatidylcholine, cholesterol, and apoA-I. Four LpA-I have been obtained and studied: two in the Lp2A-I class, 7.8 and 9.6 nm in diameter, and two in the Lp3A-I class, 10.8 and 13.4 nm. The immunoreactivity of all the epitopes tested was significantly different in LpA-I particles compared to lipid-free apoA-I, demonstrating that binding to lipids produces a drastic change in apoA-I conformation. Specific domains in the primary sequence become highly exposed while others are masked. Although the variation in immunoreactivity of the epitopes between various LpA-I was not drastic, significant differences in the calculated ED50 values were observed for a number of antibodies in small versus large particles within each class (Lp2A-I or Lp3A-I), indicating that particle size can modulate apoA-I conformation. In addition, when the competition between pairs of mAbs was analyzed in order to understand the relative position of epitopes, highly significant differences were observed as a function of particle size within each class. In particular, the competition between mAbs recognizing epitopes in the central region of apoA-I was greater in the larger particles than in their small counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)

This publication has 22 references indexed in Scilit: