Control of Molecular Structure in the Generation of Highly Luminescent Liquid Crystalline Perylenebisimide Derivatives: Synthesis, Liquid Crystalline and Photophysical Properties
- 20 September 2006
- journal article
- research article
- Published by American Chemical Society (ACS) in The Journal of Physical Chemistry B
- Vol. 110 (42) , 20937-20947
- https://doi.org/10.1021/jp063943c
Abstract
We report here, for the first time, the role of the molecular design on the liquid crystalline and solid-state photoluminescent properties of soluble and thermally stable liquid crystalline perylenebisimide derivatives. A new series of perylenebisimides were designed and developed for this purpose by adopting the stoichiometry-control approach, and amine-, hydroxyl-, ester-, and amide-functionalized molecules were synthesized. Various types of spacers with different lengths (C(2) to C(12)), types (linear, cyclohexyl, and tricyclodecane), and end-capped by phenyl or tridodecyloxy gallic units were introduced in the perylenebisimide core. The molecules were completely characterized by NMR, FT-IR, SEC, and MALDI-TOF mass techniques. Thermal analysis revealed that the perylenebisimide derivatives were thermotropic liquid crystalline, and threadlike nematic phases were observed under a polarizing light microscope. The spacer length and the rigidity of the spacers play a major role in the liquid crystalline properties of the materials. In phenyl systems, the C(6) chain with ester- and the C(12) chain with amide-end-capped molecules showed a nematic phase, whereas the C(6) chain with an amide end cap and their cyclic and tricyclic counterparts did not show any LC property. The introduction of a tridodecyloxy gallic unit induced the LC property in C(12) and the cyclohexyl system; however, it failed to do so in the tricyclodecane molecule. The absorption properties of the molecules were almost unchanged by the structural variation; however, the emission quantum yield in solution and photoluminescent (PL) intensity in the solid state were significantly different. Though the gallic unit induced liquid crystallinity in the perylenebisimide core, the quantum yield and PL intensity are 4-5 times less compared to those of the simple phenyl-capped liquid crystalline system. Among the various types of spacers, the tricyclodecane induced strong molecular aggregates via pi-stacking, which in turn increased the rigidity of the entire perylenebisimide core, resulting in the absence of liquid crystallinity and low luminescence compared to their linear and cyclohexyl analogues. The molecular aggregates were very stable even at very dilute concentration and also at high temperatures. The aggregates disappeared immediately upon addition of trifluoroacetic acid, thus confirming the strong hydrogen bonding in the aggregated states. In a nutshell, the present report demonstrates the importance of molecular design for introducing liquid crystalline phases in perylenebisimides and also the development of novel highly luminescent n-type pi-conjugated material for application in optoelectronics.Keywords
This publication has 21 references indexed in Scilit:
- Thermotropic Side-Chain Liquid Crystalline Copolymers Containing Both Mono- and Bisazobenzene Mesogens: Synthesis and PropertiesMacromolecules, 2005
- Tetrathiafulvalene in a Perylene-3,4:9,10-bis(dicarboximide)-Based Dyad: A New Reversible Fluorescence-Redox Dependent Molecular SystemThe Journal of Organic Chemistry, 2005
- Donor–Acceptor Polymers: A Conjugated Oligo(p‐Phenylene Vinylene) Main Chain with Dangling Perylene BisimidesChemistry – A European Journal, 2004
- Microwave Driven Bray–Liebhafsky Oscillatory ReactionChemphyschem, 2004
- Photoinduced Electron Transfer in a Mesogenic Donor–Acceptor–Donor SystemChemistry – A European Journal, 2002
- Liquid Crystalline Perylene Diimides: Architecture and Charge Carrier MobilitiesJournal of the American Chemical Society, 2000
- Easy synthesis of liquid crystalline perylene derivativesJournal of Materials Chemistry, 1998
- Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor AnnealingThe Journal of Physical Chemistry, 1996
- Liquid‐Crystalline Perylene Derivatives as “Discotic Pigments”Angewandte Chemie International Edition in English, 1993
- Photoelectrochemical characterization of thin films of perylenetetracarboxylic acid derivativesChemistry of Materials, 1991