Evidence for white matter disruption in traumatic brain injury without macroscopic lesions
- 20 March 2006
- journal article
- research article
- Published by BMJ in Journal of Neurology, Neurosurgery & Psychiatry
- Vol. 77 (7) , 850-855
- https://doi.org/10.1136/jnnp.2005.077875
Abstract
Background: Non-missile traumatic brain injury (nmTBI) without macroscopically detectable lesions often results in cognitive impairments that negatively affect daily life. Aim: To identify abnormal white matter projections in patients with nmTBI with cognitive impairments using diffusion tensor magnetic resonance imaging (DTI). Methods: DTI scans of healthy controls were compared with those of 23 patients with nmTBI who manifested cognitive impairments but no obvious neuroradiological lesions. DTI was comprised of fractional anisotropy analysis, which included voxel-based analysis and confirmatory study using regions of interest (ROI) techniques, and magnetic resonance tractography of the corpus callosum and fornix. Results: A decline in fractional anisotropy around the genu, stem and splenium of the corpus callosum was shown by voxel-based analysis. Fractional anisotropy values of the genu (0.47), stem (0.48), and splenium of the corpus callosum (0.52), and the column of the fornix (0.51) were lower in patients with nmTBI than in healthy controls (0.58, 0.61, 0.62 and 0.61, respectively) according to the confirmatory study of ROIs. The white matter architecture in the corpus callosum and fornix of patients with nmTBI were seen to be coarser than in the controls in the individual magnetic resonance tractography. Conclusions: Disruption of the corpus callosum and fornix in patients with nmTBI without macroscopically detectable lesions is shown. DTI is sensitive enough to detect abnormal neural fibres related to cognitive dysfunction after nmTBI.Keywords
This publication has 29 references indexed in Scilit:
- Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel‐based analysisNMR in Biomedicine, 2004
- Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI studyJournal of Neurology, Neurosurgery & Psychiatry, 2004
- Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasmJournal of Neurosurgery, 2002
- A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human BrainsNeuroImage, 2001
- Nonspecific white matter degeneration following traumatic brain injuryJournal of the International Neuropsychological Society, 1995
- Cognitive flexibility and mental programming after closed head injuries and anterior or posterior cerebral excisionsNeuropsychologia, 1992
- Serial MRI and neurobehavioural findings after mild to moderate closed head injury.Journal of Neurology, Neurosurgery & Psychiatry, 1992
- Corpus callosal atrophy following closed head injury: detection with magnetic resonance imagingJournal of Neurosurgery, 1990
- Persistent memory loss following section of the anterior fornix in humans. A historical reviewSurgical Neurology, 1987
- Diffuse axonal injury and traumatic coma in the primateAnnals of Neurology, 1982