Abstract
Input current distortion in the vicinity of input voltage zero crossings of boost single-phase power factor corrected (PFC) ac-dc converters is studied in this paper. Previously known causes for the zero-crossing distortion are reviewed and are shown to be inadequate in explaining the observed input current distortion, especially under high ac line frequencies. A simple linear model is then presented which reveals two previously unknown causes for zero-crossing distortion, namely, the leading phase of the input current and the lack of critical damping in the current loop. Theoretical and practical limitations in reducing the phase lead and increasing the damping factor are discussed. A simple phase compensation technique to reduce the zero-crossing distortion is also presented. Numerical simulation and experimental results are presented to validate the theory.

This publication has 9 references indexed in Scilit: