Down‐regulation of chondrocyte aggrecan and type‐II Collagen gene expression correlates with increases in static compression magnitude and duration
- 1 November 1999
- journal article
- research article
- Published by Wiley in Journal of Orthopaedic Research
- Vol. 17 (6) , 836-842
- https://doi.org/10.1002/jor.1100170608
Abstract
The goal of this study was to examine the simultaneous effects of mechanical compression of chondrocytes on mRNA expression and macromolecular synthesis of aggrrecan and type‐II collagen. Bovine cartilage explants were exposed to different magnitudes and durations of applied mechanical compression, and levels of aggrecan and type‐IIa collagen mRNA normalized to glyceraldehyde‐3‐phosphate dehydrogenase were measured and quantified by Northern blot analysis. Synthesis of aggrecan and type‐II collagen protein was measured by radiolabel incorporation of [35S]sulfate and [3H]proline into macromolecules. The results showed a dose‐dependent decrease in mRNA levels for aggrecan and type‐II collagen, with increasing compression relative to physiological cut thickness applied for 24 hours. Radiolabel incorporation into glycosaminoglycans and collagen also decreased with increasing compression in a dose‐related manner similar to the changes seen in mRNA expression. The modulation of aggrecan and type‐II collagen mRNA and protein synthesis were dependent on the duration of the compression. Aggrecan and type‐II collagen mRNA expression increased during the initial 0.5 hours of static compression; however, 4‐24 hours after compression was applied total mRNA levels had significantly decreased. The synthesis of aggrecan and collagen protein decreased more rapidly than did mRNA levels after the application of a step compression. Together, these results suggest that mechanical compression rapidly alters chondrocyte aggrecan and type‐II collagen gene expression on application of load. However, our results indicate that the observed decreases in biosynthesis may not be related solely to changes in mRNA expression. The mechanisms by which mechanical forces affect different segments of the biosynthetic pathways remain to be determined.Keywords
This publication has 27 references indexed in Scilit:
- Hydrostatic pressur influences mRNA exprssion of trnsforming growth factor‐β1 and heat shock protein 70 in chondrocyte‐like cell lineJournal of Orthopaedic Research, 1997
- Effects of fluid‐induced shear on articular chondrocyte morphology and metabolism in vitroJournal of Orthopaedic Research, 1995
- The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compressionJournal of Biomechanics, 1995
- In situ expression of collagen and proteoglycan genes in notochord and during skeletal development and growthMicroscopy Research and Technique, 1994
- The effects of matrix compression on proteoglycan metabolism in articular cartilage explantsOsteoarthritis and Cartilage, 1994
- Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate BeadsExperimental Cell Research, 1994
- Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) jointJournal of Orthopaedic Research, 1990
- ErratumJournal of Orthopaedic Research, 1990
- Factors involved in the regulation of proteoglycan metabolism in articular cartilageArthritis & Rheumatism, 1989
- Biochemical changes in articular cartilage after joint immobilization by casting or external fixationJournal of Orthopaedic Research, 1989