Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods
- 1 December 1992
- journal article
- Published by Springer Nature in Numerische Mathematik
- Vol. 61 (1) , 281-290
- https://doi.org/10.1007/bf01385510
Abstract
No abstract availableKeywords
This publication has 12 references indexed in Scilit:
- Order Conditions for Canonical Runge–Kutta SchemesSIAM Journal on Numerical Analysis, 1991
- A Hamiltonian, explicit algorithm with spectral accuracy for the ‘good’ Boussinesq systemComputer Methods in Applied Mechanics and Engineering, 1990
- Symplectic integration of Hamiltonian systemsNonlinearity, 1990
- On the equivalence of a-stability and g-stabilityApplied Numerical Mathematics, 1989
- Runge-kutta schemes for Hamiltonian systemsBIT Numerical Mathematics, 1988
- Canonical Runge-Kutta methodsZeitschrift für angewandte Mathematik und Physik, 1988
- Studies in Numerical Nonlinear Instability III: Augmented Hamiltonian SystemsSIAM Journal on Applied Mathematics, 1987
- Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger EquationIMA Journal of Numerical Analysis, 1986
- On One-Leg Multistep MethodsSIAM Journal on Numerical Analysis, 1983
- G-stability is equivalent toA-stabilityBIT Numerical Mathematics, 1978