Abstract
Throughout this paper, Z is the ring of integers, ƒ*(t) (ƒ(t)) is an integer monic (co-monic) polynomial in the indeterminate t (i.e., each coefficient of ƒ* (ƒ) is in Z and its highest (lowest) coefficient is 1 (5, p. 121, Definition) and M* (M) is the multiplicative semigroup of all integer monic (co-monic) polynomials ƒ* (ƒ) having no constant term. In (3, Theorem 2), Herstein proved that if R is a division ring with centre C such that 1 then R = C. In this paper we seek a generalization of Herstein's result to semi-simple rings. We also study the following condition: (1)* Our results are quite complete for a semi-simple ring R in which there exists a bound for the codegree ofƒ (ƒ*) (i.e., the degree of the lowest monomial of ƒ(ƒ*)) appearing in the left-hand side of (1) ((1)*).