The mitochondrial membrane potential (??m) in apoptosis; an update

Abstract
Mitochondrial dysfunction has been shown to participate in the induction of apoptosis and has even been suggested to be central to the apoptotic pathway. Indeed, opening of the mitochondrial permeability transition pore has been demonstrated to induce depolarization of the transmembrane potential (Δψm), release of apoptogenic factors and loss of oxidative phosphorylation. In some apoptotic systems, loss of Δψm may be an early event in the apoptotic process. However, there are emerging data suggesting that, depending on the model of apoptosis, the loss of Δψm may not be an early requirement for apoptosis, but on the contrary may be a consequence of the apoptotic-signaling pathway. Furthermore, to add to these conflicting data, loss of Δψm has been demonstrated to not be required for cytochrome c release, whereas release of apoptosis inducing factor AIF is dependent upon disruption of Δψm early in the apoptotic pathway. Together, the existing literature suggests that depending on the cell system under investigation and the apoptotic stimuli used, dissipation of Δψm may or may not be an early event in the apoptotic pathway. Discrepancies in this area of apoptosis research may be attributed to the fluorochromes used to detect Δψm. Differential degrees of sensitivity of these fluorochromes exist, and there are also important factors that contribute to their ability to accurately discriminate changes in Δψm.

This publication has 0 references indexed in Scilit: