Impact of Changing the Statistical Methodology on Hospital and Surgeon Ranking
- 1 April 2006
- journal article
- research article
- Published by Wolters Kluwer Health in Medical Care
- Vol. 44 (4) , 311-319
- https://doi.org/10.1097/01.mlr.0000204106.64619.2a
Abstract
Background: Risk adjustment is central to the generation of health outcome report cards. It is unclear, however, whether risk adjustment should be based on standard logistic regression, fixed-effects or random-effects modeling. Objective: The objective of this study was to determine how robust the New York State (NYS) Coronary Artery Bypass Graft (CABG) Surgery Report Card is to changes in the underlying statistical methodology. Methods: Retrospective cohort study based on data from the NYS Cardiac Surgery Reporting System on all patient undergoing isolated CABG surgery in NYS and who were discharged between 1997 and 1999 (51,750 patients). Using the same risk factors as in the NYS models, fixed-effects and random-effects models were fitted to the NYS data. Quality outliers were identified using 1) the ratio of observed-to-expected mortality rates (O/E ratio) and confidence intervals (CIs) calculated using both parametric (Poisson distribution) and nonparametric (bootstrapping) techniques; and 2) shrinkage estimators. Results: At the surgeon level, the standard logistic regression model, the fixed-effects model, and the fixed-effects component of the random-effects model demonstrated near-perfect agreement on the identity of quality outliers using a quality indicator based on the O/E ratio and the Poisson distribution. Shrinkage estimators identified the fewest outliers, whereas the O/E ratios with bootstrap CI identified the greatest number of outliers. The results were similar for hospitals, except that the fixed-effects model identified more outliers than either the NYS model or the fixed-effects component of the random-effects model. Conclusion: Shrinkage estimators based on random-effects models are slightly more conservative in identifying quality outliers compared with the traditional approach based on fixed-effects modeling and standard regression. Explicitly modeling surgeon provider effect (fixed-effects and random-effects models) did not significantly alter the distribution of quality outliers when compared with standard logistic regression (which does not model provider effect). Compared with the standard parametric approach, the use of a bootstrap approach to construct 95% confidence interval around the O/E ratio resulted in more providers being identified as quality outliers.Keywords
This publication has 33 references indexed in Scilit:
- Quality Report Cards, Selection of Cardiac Surgeons, and Racial Disparities: A Study of the Publication of the New York State Cardiac Surgery ReportsINQUIRY: The Journal of Health Care Organization, Provision, and Financing, 2004
- Do Well-Publicized Risk-Adjusted Outcomes Reports Affect Hospital Volume?Medical Care, 2004
- Cardiac surgery report cards: comprehensive review and statistical critiqueThe Annals of Thoracic Surgery, 2001
- The “new” scores: what problems have been fixed, and what remain?Current Opinion in Critical Care, 2000
- Quality of Care Information Makes a DifferenceMedical Care, 1998
- Public release of cardiac surgery outcomes data in New York: What do New York state cardiologists think of it?American Heart Journal, 1997
- The risks of risk adjustmentJAMA, 1997
- Statistical Methods for Profiling Providers of Medical Care: Issues and ApplicationsJournal of the American Statistical Association, 1997
- The Public Release of Hospital and Physician Mortality Data in PennsylvaniaMedical Care, 1997
- Confidence intervals for weighted sums of poisson parametersStatistics in Medicine, 1991