A level set method for oil slick segmentation in SAR images

Abstract
Despite much effort and significant progress in recent years, image segmentation remains a challenging problem in image processing, especially for the low contrast, noisy synthetic aperture radar (SAR) images. This paper explores the segmentation of oil slicks using a partial differential equation (PDE)‐based level set method, which represents the slick surface as an implicit propagation interface. Starting from an initial estimation with priori information, the level set method creates a set of speed functions to detect the position of the propagation interface. Specifically, the image intensity gradient and the curvature flow are utilized together to determine the speed and direction of the propagation. This allows the front interface to propagate naturally with topological changes, significant protrusions and narrow regions, giving rise to stable and smooth boundaries that discriminate oil slicks from the surrounding water. As the speckles are removed concurrently while the front interface propagates, the pre‐filtering of noise is saved. The proposed method has been illustrated by experiments on oil slick segmentation using the ERS‐2 SAR images. Its advantages over the traditional image segmentation approaches have also been demonstrated.

This publication has 8 references indexed in Scilit: