SPECTRAL APPROXIMATION OF A SCHRÖDINGER TYPE EQUATION

Abstract
This paper deals with a linear Schrödinger type equation in a rectangular domain with mixed Dirichlet-Neumann boundary conditions. The well-posedness of the continuous problem is proved, then a discrete problem is defined by combining a Legendre type spectral method in the first direction and a leap-frog scheme in the other one. The numerical analysis of the discretization is performed and error estimates are given. Numerical tests are presented.

This publication has 0 references indexed in Scilit: