Numerical analysis of static wavelength shift for DFB lasers with longitudinal mode spatial hole burning

Abstract
The static wavelength shift induced by longitudinal mode spatial hole burning is analyzed numerically for lambda /4-shifted DFB lasers. The effective Bragg wavelength at each bias level is introduced to clarify the contribution of nonuniformity in carrier density distribution to the lasing wavelength shift. It is shown that the wavelength shift is caused by two separate factors: by the position-dependent deviation and by the average value in the exact N/sub eq/ distribution. The former factor induces both red- and blue-shifted tuning due to the nonuniformity itself in carried density distribution, while the latter results in blue-shifted tuning due to the increase in modal gain.