Abstract
Based on an established theory of anisotropic plasticity, a class of axisymmetric plane stress problems is solved for sheet metals which harden according to a power law and are isotropic in their plane. A new method of solution, the stress plane method, is used. The analytic solutions for the problems considered are obtained in the stress plane. The stress-concentration factors introduced by a hole or a rigid inclusion at the center of an infinite sheet are obtained for arbitrary degree of anisotropy and strain-hardening characteristics. The influence of anisotropy and strain-hardening on the deep-drawing problem is also studied. The results show that the type of anisotropy and strain-hardening assumed always influences the stress concentration and drawability in a favorable way.

This publication has 0 references indexed in Scilit: