Weakly correlated exciton pair states in large quantum dots

Abstract
We present a calculation of the two-exciton states in semiconductor quantum dots much larger in size than the exciton Bohr radius, and identify a weakly correlated exciton pair state that has a large oscillator strength, increasing proportionately to the volume of the quantum dot. This state is shown to be responsible for the saturation of the size dependence of the resonant excitonic optical nonlinearity. It also provides a satisfactory understanding of the blueshift of the excited-state absorption in quantum dots. These results and the biexciton binding energy and oscillator strength are in good agreement with reported experimental results on CuCl.