The effect of different patterns of long-term stimulation on contractile properties and myosin light chains in rabbit fast muscles

Abstract
Fast rabbit skeletal muscles (tibialis anterior and extensor digitorum longus) were stimulated for 2–28 days by electrodes implanted in the vicinity of the peroneal nerve to produce maximal contractions at two different frequency patterns: that occuring naturally in nerves to slow muscles (10 Hz continuously) or three bursts of tetani (40 Hz) per minute, each 5s in duration. Both types of frequency produced muscles more resistant to fatigue during isometric twitch contractions, and led to a prolongation of contraction time greater and more consistent with 10 Hz than with 40 Hz. The twitch/tetanus ration was significantly higher in muscles stimulated at 10 Hz for 3–4 weeks but was not different from controls in muscles stimulated at 40 Hz. Both types of stimulation led to the appearance of myosin light chains characteristic of slow muscles. Muscles stimulated for 4 weeks at 40 Hz developed greater twitch tension per gram, and had significantly smaller cross-sectional area of myofibrils than control muscles. It is concluded that long-term electrical stimulation of fast muscles can affect some muscle contractile properties to resemble those of slow muscles irrespective of frequency of stimulation, provided the total number of stimuli is comparable, the duration of stimulation is long enough (minimum 2 weeks) and all motor units are activated.