A Posteriori Error Estimates for Boundary Element Methods

Abstract
This paper deals with a general framework for a posteriori error estimates in boundary element methods which is specified for three examples, namely Symm’s integral equation, an integral equation with a hypersingular operator, and a boundary integral equation for a transmission problem. Based on these estimates, an analog of Eriksson and Johnson’s adaptive finite element method is proposed for the h-version of the Galerkin boundary element method for integral equations of the first kind. The efficiency of the approach is shown by numerical experiments which yield almost optimal convergence rates even in the presence of singularities.