Comparison of Midazolam and Diazepam by the Intramuscular Route for the Control of Seizures in a Mouse Model of Status Epilepticus

Abstract
A model system is described in which sustained clonic seizures are produced by a combination of phenytoin (PHT) and pentylenetetrazol (PTZ) in the mouse, the former agent preventing the terminal tonic spasms produced by the latter. In this system, midazolam (MDL), a water-soluble benzodiazepine, was compared with diazepam (DZP), a sparingly soluble agent which is widely used to treat status epilepticus (SE) in humans. Both agents were administered intramuscularly (i.m.) in approximately equieffective doses in animals exhibiting clonic seizure activity. MDL proved to be about twice as potent as DZP. Whereas control animals convulsed for a period of .apprx. 90 min, those treated with DZP 0.2 and 0.4 mg/kg convulsed for 7.8 and 3.9 min, respectively; mice receiving MDL 0.1 and 0.2 mg/kg convulsed for 1.9 and 1.4 min, respectively. MDL arrested seizures substantially more rapidly than diazepam (p < 0.05). These data suggest that MDL has sufficiently rapid anticonvulsant action to merit evaluation for control of SE in humans when a rapidly absorbed antiepileptic drug (AED) is needed and intravenous (i.v.) administration is not feasible.

This publication has 6 references indexed in Scilit: