Regulatory Interactions between Iron and Nitric Oxide Metabolism for Immune Defense againstPlasmodium falciparumInfection
Open Access
- 1 May 2001
- journal article
- Published by Oxford University Press (OUP) in The Journal of Infectious Diseases
- Vol. 183 (9) , 1388-1394
- https://doi.org/10.1086/319860
Abstract
Iron chelation therapy of Plasmodium falciparum infection alleviates the clinical course of cerebral malaria in children. This study assessed the underlying mechanisms of this therapy. Cytokine stimulation of human (intestinal cell line DLD-1) or murine cells (murine macrophage cell line RAW 264.7) resulted in increased nitric oxide (NO) formation and decreased survival of plasmodia within cocultured human erythrocytes. The addition of desferrioxamine (DFO) before cytokine treatment increased both NO formation and parasite killing but had no effect in the presence of the inhibitor of NO formation, L-N6-(1-iminoethyl)-lysine. Moreover, peroxynitrite, which is formed after chemical reaction of NO with superoxide, appears to be the principal effector molecule for macrophage-mediated cytotoxicity toward P. falciparum and interferon-γ is a major regulatory cytokine for this process. The effect of DFO on the clearance of plasmodia appears to be due to enhanced generation of NO, rather than to limitation of iron availability to the parasiteKeywords
This publication has 0 references indexed in Scilit: