Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function
- 29 August 2003
- journal article
- website
- Published by Wiley in Journal of Neurochemistry
- Vol. 86 (6) , 1545-1552
- https://doi.org/10.1046/j.1471-4159.2003.01973.x
Abstract
Obstructive sleep apnea (OSA) is a frequent medical condition characterized by intermittent hypoxia (IH) during sleep, and is associated with neurodegenerative changes in several brain regions along with learning deficits. We hypothesized that aging rats exposed to IH during sleep would be particularly susceptible. Young (3–4 months) and aging (20–22 months) Sprague–Dawley rats were therefore exposed to either room air or IH for 14 days. Learning and memory was assessed with a standard place‐training version of the Morris water maze. Aging rats exposed to room air (RA) or IH displayed significant spatial learning impairments compared with similarly exposed young rats; furthermore, the decrements in performance between RA and IH were markedly greater in aging compared with young rats (p < 0.01), and coincided with the magnitude of IH‐induced decreases in cyclic AMP response element binding (CREB) phosphorylation. Furthermore, decreases in proteasomal activity occurred in both young and aging rats exposed to IH, but were substantially greater in the latter (p < 0.001). Neuronal apoptosis, as shown by cleaved caspase 3 expression, was particularly increased in aging rats exposed to IH (p < 0.01 versus young rats exposed to IH). Collectively, these findings indicate unique vulnerability of the aging rodent brain to IH, which is reflected at least in part, by the more prominent decreases in CREB phosphorylation and a marked inability of the ubiquitin‐proteasomal pathway to adequately clear degraded proteins.Keywords
This publication has 50 references indexed in Scilit:
- Hypothesis: Proteasomal DysfunctionAnnals of the New York Academy of Sciences, 2002
- Reversible Inhibition of CREB/ATF Transcription Factors in Region CA1 of the Dorsal Hippocampus Disrupts Hippocampus-Dependent Spatial MemoryNeuron, 2002
- Oxidative Modification and Inactivation of the Proteasome during Coronary Occlusion/ReperfusionJournal of Biological Chemistry, 2001
- The 26S Proteasome: A Molecular Machine Designed for Controlled ProteolysisAnnual Review of Biochemistry, 1999
- CREB AND MEMORYAnnual Review of Neuroscience, 1998
- Aging, energy, and oxidative stress in neurodegenerative diseasesAnnals of Neurology, 1995
- Effects of cAMP Simulate a Late Stage of LTP in Hippocampal CA1 NeuronsScience, 1993
- Obstructive Sleep Apnea Syndrome: Pathogenesis of Neuropsychological DeficitsJournal of Clinical and Experimental Neuropsychology, 1991
- Aging and the physiology of spatial memoryNeurobiology of Aging, 1988
- Nocturnal hypoxia and Neuropsychological variablesJournal of Clinical and Experimental Neuropsychology, 1986