Theory of surface electronic states in metallic superlattices
- 15 June 1985
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 31 (12) , 7739-7748
- https://doi.org/10.1103/physrevb.31.7739
Abstract
We report the existence of surface-localized electronic states for a superlattice consisting of alternating slabs (parallel to the surface) of two different metals. The superlattice has a larger periodicity in the direction perpendicular to the slabs and therefore many electronic branches in the folded Brillouin zone. In the gaps existing between these bulk branches appear the surface-localized modes. The theory is developed on an s-band model of a simple-cubic crystal. The simplicity of this model allows one to obtain in closed form the bulk and (001) surface Green’s functions for this superlattice. The analytic knowledge of these functions enables us to study easily all the bulk and surface electronic properties of this metallic superlattice, which otherwise would require huge numerical calculations. We give here the analytic expression we obtained for the folded bulk electronic bands and also the expression that gives the surface electronic states. A few figures for specific cases illustrate these results.Keywords
This publication has 10 references indexed in Scilit:
- Modified pseudopotential theory of metallic superlatticesSolid State Communications, 1984
- Electron structure of transition metal superlatticesSolid State Communications, 1984
- Theory of surface phonons in superlatticesPhysical Review B, 1984
- Model calculations of local electron and phonon densities of states in bimetallic superlatticesPhysical Review B, 1983
- The phonon structure of layered ultrathin coherent structuresJournal of Low Temperature Physics, 1982
- Lattice relaxation at a metal surfacePhysical Review B, 1981
- Layered solids. New crystalline materialsPhysical Review B, 1981
- Simple self-consistent theory of adhesion at a bimetallic interfacePhilosophical Magazine, 1974
- A green's function theory of surface statesSurface Science, 1971
- Electron surface states and surface entropy for a simple cubic latticeSurface Science, 1969