Long-Term Potentiation of Thalamocortical Transmission in the Adult Visual CortexIn Vivo

Abstract
It has been suggested that NMDA receptor-dependent synaptic strengthening, like that observed after long-term potentiation (LTP), is a mechanism by which experience modifies responses in the neocortex. We report here that patterned (theta burst) stimulation of the dorsal lateral geniculate nucleus reliably induces LTP of field potentials (FPs) evoked in primary visual cortex (Oc1) of adult ratsin vivo. The response enhancement is saturable, long-lasting, and dependent on NMDA receptor activation. To determine the laminar locus of these changes, current source density (CSD) analysis was performed on FP profiles obtained before and after LTP induction. LTP was accompanied by an enhancement of synaptic current sinks located in thalamorecipient (layer IV and deep layer III) and supragranular (layers II/III) cell layers. We also examined immunocytochemical labeling for the immediate early gene zif-268 1 hr after induction of LTP. In concert with the laminar changes observed in CSD analyses, we observed a significant increase in the number of zif-268-immunopositive neurons in layers II–IV that occurred over a wide extent of Oc1. Last, we investigated the functional consequences of LTP induction by monitoring changes in visually evoked potentials. After LTP, we observed that the cortical response to a full-field flash was significantly enhanced and that responses to grating stimuli were increased across a range of spatial frequencies. These findings are consistent with growing evidence that primary sensory cortex remains plastic into adulthood, and they show that the mechanisms of LTP can contribute to this plasticity.