Effects of antipsychotic drugs on dopamine and serotonin contents and metabolites, dopamine and serotonin transporters, and serotonin 1A receptors

Abstract
The effects of neuroleptics have been attributed to dopamine (DA) receptor blockade; however, other neurotransmitters, in particular serotonin (5-HT), have also been implicated. In this study, we examined the effects of clozapine and haloperidol on the distribution of DA and 5-HT transporters, on endogenous DA, 5-HT and their major metabolites, and on 5-HT1A receptors. Adult male Sprague-Dawley rats were treated with either haloperidol (1 mg/kg/day, i.p.), clozapine (20 mg/kg/day, i.p.) or saline for 21 days, and following 3 days of withdrawal, the brains were removed. Tissue levels of DA and 5-HT and their metabolites were measured by high-performance liquid chromatography in 16 brain regions, while quantitative autoradiography with [125I]RTI-121, [3H]citalopram and [3H]8-OH-DPAT was employed to label DA transporters, 5-HT transporters and 5-HT1A receptors, respectively. After haloperidol, densities of 5-HT transporters were increased in the dorsal insular cortex and in the ventral half of caudal neostriatum, while 5-HT1A receptors augmented in cingulate cortex but decreased in the entorhinal area. After clozapine, [3H]citalopram labelling was increased in ventral hippocampus, ventral caudal neostriatum and nucleus raphe dorsalis, but decreased in medio-dorsal and latero-dorsal neostriatum as well as in substantia nigra. Binding of [3H]8-OH-DPAT following clozapine was decreased in frontal, parietal, temporal and entorhinal cortices but increased in the CA3 division of Ammon's horn. The changes in 5-HT transporters in nucleus raphe dorsalis and substantia nigra, as well as the 5-HT1A receptor down-regulations caused by clozapine but not by haloperidol, may explain effects obtained with clozapine and other atypical neuroleptics. There were no modifications in densities of DA transporters, nor of tissue DA levels, after the chronic neuroleptic treatments. The results are in line with previous suggestions that a certain degree of tolerance to neuroleptics develops, in spite of profound D1 and D2 receptor changes that persist during the entire chronic treatment with these psychotropic agents.

This publication has 0 references indexed in Scilit: