Plasma Transport in Toroidal Confinement Systems

Abstract
The neoclassical theory of plasma transport in axisymmetric, toroidal confinement systems, is developed by means of a variational principle for the rate of irreversible entropy production. The variational principle derived here employs the full Fokker-Planck collision operator, including both like and unlike species collisions. Using the variational principle, all the relevant neoclassical transport coefficients are systematically evaluated in the “banana” regime of small collisional frequency, to lowest order in the inverse aspect ratio. These results include both the “diagonal” and “cross” coefficients for the particle fluxes, ion and electron heat flux, and electric current. By combining the transport coefficients with appropriate moments of the drift equation, a closed set of equations which accurately summarize the predictions of neoclassical theory in the banana regime is obtained. The significance of these equations, in particular with regard to recent tokamak experiments, is discussed briefly.