Near-Real–Time GPS-Based Orbit Determination and Sea Surface Height Observations from the Jason-1 Mission Special Issue: Jason-1 Calibration/Validation
- 1 July 2003
- journal article
- research article
- Published by Taylor & Francis in Marine Geodesy
- Vol. 26 (3-4) , 383-397
- https://doi.org/10.1080/714044528
Abstract
The Jason-1 Operational Sensor Data Record (OSDR) is intended as a wind and wave product that is aimed towards near-real–time (NRT) meteorological applications. However, the OSDR provides most of the information that is required to determine altimetric sea surface heights in NRT. The exceptions include a sufficiently accurate orbit altitude, and pressure fields to determine the dry troposphere path delay correction. An orbit altitude field is provided on the OSDR but has accuracies that range between 8–25 cm (RMS). However, tracking data from the on-board BlackJack GPS receiver are available with sufficiently short latency for use in the computation of NRT GPS-based orbit solutions. The orbit altitudes from these NRT orbit solutions have typical accuracies of < 3.0 cm (RMS) with a latency of 1–3 h, and < 2.5 cm (RMS) with a latency of 3–5 h. Meanwhile, forecast global pressure fields from the National Center for Environmental Prediction (NCEP) are available for the NRT computation of the dry troposphere correction. In combination, the Jason-1 OSDR, the NRT GPS-based orbit solutions, and the NCEP pressure fields can be used to compute sea surface height observations from the Jason-1 mission with typical latencies of 3–5 h, and have differences with those from the 2–3 day latency Interim Geophysical Data Records of < 5 cm (RMS). The NRT altimetric sea surface height observations are potentially of benefit to forecasting, tactical oceanography, and natural hazard monitoring.Keywords
This publication has 0 references indexed in Scilit: