Abstract
Void growth and coalescence under physical States similar to those found in highly stressed regions ahead of a crack is investigated. The analysis introduces a representative material volume containing several large voids and a population of microvoids present from the very beginning, all of which are modeled as discrete entities. Plastic yielding has pervaded the material volume of interest. The underlying micromechanics of final rupture is dominated by a succession of rapidly growing microvoids. This involves the synergistic interaction between elasticity associated with high stress triaxiality, stiffness softening caused by plastic yielding and a rich supply of length scales arising from voids of vastly different sizes

This publication has 0 references indexed in Scilit: