Abstract
High-speed vehicle/structure models constructed based on a new formulation of dynamic interaction between high-speed vehicles and flexible guideways are presented. A basic vehicle/structure interaction model forms a basic building block of complex vehicle/structure models in which lumped-parameter sub-components of the vehicle component (e.g., suspended masses with springs and dashpots) are assembled onto the basic vehicle/structure interaction component. A vertical and an inclined vehicle models are formulated. These vehicle models can serve as yet more advanced building-block models in the hierarchical construction of complex vehicle/structure models. The inclined vehicle model can be used to study the effects of braking of high-speed vehicles of flexible guideways. Fully nonlinear equations of motion of both models are given. Upon introducing approximations to the nonlinear kinematics, mildly nonlinear equations with an unusual mathematical structure are consistently derived. These equations are appropriate for use under realistic working conditions of the system, and are particularly amenable for numerical treatment using a recently proposed class of predictor/corrector algorithms.

This publication has 0 references indexed in Scilit: